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Abstract: In this paper, a two-warehouse EOQ model for non-instantaneous 
deteriorating item with price and time dependent demand is developed under 
imprecise environment. To reduce the loss due to deterioration, the concept of 
preservation technology investment is incorporated. In order to make the model 
more general, shortages are allowed and are partially backlogged. Further, the 
impreciseness of the parameters like coefficients of demand rate, holding costs, 
deterioration costs, shortage cost and lost sale cost are assumed as interval 
numbers which are made crisp by parametric functional form representation of 
interval numbers. The objective of this model is to find an optimal ordering 
policy with a view to minimise total average cost. To illustrate the developed 
model, a numerical example is taken in its support and also sensitivity analysis 
is carried out with respect to some important parameters. 
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1 Introduction 

In today’s world, the word inventory problem has become a household term. Inventory 
problem arises in every sphere of life right from one’s kitchen to any business enterprise 
or industry. In this present era of high competition, every business organisation wants to 
be on the top of the market, and is focused to maintain a good relationship with the 
customers, for that a perfect inventory policy is required. This unfolds a research area to 
many academicians and practitioners in the field of inventory management. A perfect 
inventory control system always represents a real market situation and keeps all the 
parameters like demand, storage space, etc. up to mark. Since the inception of stocking 
process, the researchers have been developing various inventory models incorporating 
different parameters like demand, deterioration, shortage, etc. representing the real life 
scenarios so as to get insights in decision making. Among these developed models, 
enormous emphasis has been given to develop models for deteriorating items in the 
recent times. Panda et al. (2017) proposed a volume flexible deteriorating inventory 
model with price sensitive demand to maximise total profit per cycle using real-coded 
genetic algorithm (RCGA). Kumar (2019) developed an inventory planning problem for 
deteriorating items with time varying demand and parabolic time dependent holding cost. 
In the aforesaid model, the salvage value was incorporated and it was found that the 
salvage coefficient has least impact on the parameters of the inventory system. Jaggi et al. 
(2019a) also studied a two-echelon supply chain inventory model for deteriorating items 
with displayed stock dependent demand. A partially backlogged inventory model with 
linear rate of deterioration and selling price dependent demand was developed by Sahoo 
et al. (2019). The said model was solved analytically to minimise total inventory cost. 
The work of Jaggi et al. (2019b) is also worth mentioning in the field of inventory 
management for deteriorating items. 

In most of the inventory models, it is assumed that items get deteriorated instantly on 
their arrival in the system. This type of deteriorating item is termed as instantaneous 
deteriorating item. But, there are large numbers of items, as for example, electronic 
goods, bloods, milk, fresh fruits, vegetables, etc. that maintain their quality or original 
condition for a definite period of time. During that span, no deterioration comes into 
picture. These items may be classified as non-instantaneous deteriorating items. 
Consideration of such type of items in inventory models is much realistic, and this has 
been an object for study in the recent decade. Though these items do not deteriorate for a 
fixed period of time, but after that definite span of time the effect of deterioration, 
however, cannot be overlooked for long run of a business setup. To shrink the 
deteriorating rate, many business enterprises have considered preservation technologies 
in inventory system in order to reduce economic loss due to deterioration. After the 
pioneering contribution by Hsu et al. (2010), lots of models have been developed with the 
use of preservation technology. The works by Sarkar et al. (2017) and Zhang et al. (2016) 
are worth mentioning in this regard. For non-instantaneous deteriorating items, Dye 
(2013) was first to incorporate preservation technology to develop the model with 
constant demand and time dependent deterioration rate. Recently, Li et al. (2019) 
developed a model for non-instantaneous items with price dependent demand under the 
use of preservation technology investment. They extended the Dye’s (2013) model to 
study interesting fact that preservation investment affects not only the deterioration rate 
but also the length of no-deterioration period of the item. 
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Table 1 Comparison of inventory models with single or two-warehouse under preservation 
technology related to this present article 
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Most of inventory models are developed with different realistic assumptions, and then a 
suitable optimisation problem is formulated as cost minimisation or profit maximisation 
problem. To solve these types of optimisation problems in an uncertain situation, 
researches employ different approaches like, stochastic approach, fuzzy approach,  
fuzzy-stochastic approach and interval approach. Among these approaches, interval 
approach is more significant. In recent times, it has received considerable attention  
from modelling community. In interval approach, we represent impreciseness of the 
parameters by interval numbers. For details, one may refer to Rahman et al. (2020a) and 
Ruidas et al. (2019). 

In the next section, literature review has been given to get a current state of 
knowledge about different inventory models in the context of price and time dependent 
demand, preservation technology and interval approach for deteriorating items. 

2 Literature review 

The study of inventory models started in the year 1915. Harris (1915) was the first to 
consider economic order quantity (EOQ) inventory model considering constant rate of 
demand and no deterioration. But in reality, it is quite natural that most of the items to be 
stored deteriorate or decay over time. Thus, in order to make a realistic inventory model 
the effect of deterioration cannot be neglected. In literature, deterioration is defined, in 
general, as the decay, damage, expiration, spoilage, obsolescence, loss of quality or value 
of the stored items. Ghare and Schrader (1963) was the first to consider EOQ model for 
deteriorating items. They proposed an EOQ model for exponentially decaying items with 
constant demand. Since then, lots of models have been developed for deteriorating items. 
Covert and Philip (1973) presented an inventory model for deteriorating items where 
deterioration rate follows Weibull distribution. Later, Deb and Chaudhuri (1986) 
developed a model for deteriorating items with time dependent demand. Bhunia et al. 
(2009), Dave and Patel (1981), Sarkar and Sarkar (2013) and Wee (1997) are some 
significant contributions in this direction. For detailed survey, the works of Bakker et al. 
(2012) and Goyal and Giri (2001) may be referred. Recently, Singh et al. (2018) 
proposed an EOQ model with ramp type demand for decaying items. They considered 
items deteriorate at the rate following three-parameter Weibull distribution. Khurana  
et al. (2018) developed a production inventory model for time dependent demand and 
deterioration. To make it a general one, they allowed production rate to depend on market 
demand. Khurana and Chaudhary (2018) proposed an inventory model where demand is 
time and stock dependent. They studied the model under partial backlogging (both 
constant and time dependent) to see the effect on total cost. Tiwari et al. (2018) proposed 
a joint pricing and inventory model under two-level partial trade credit with partial 
backlogging shortages. They solved the model analytically and designed a solution 
algorithm to maximise profit. Although most of the inventory models assume that items 
start deteriorating instantly from the time of arrival in the stock, Wu et al. (2006) was the 
first to argue that there are items whose deterioration occur after a definite period of  
time. In the recent decade, group of researchers have studied inventory policy for  
non-instantaneous deteriorating items, for instance, Chung (2009), Geetha and 
Uthayakumar (2010), Ouyang et al. (2006) and Rabbani et al. (2015) are some worth 
mentioning papers in this regard. Tiwari et al. (2017) also developed a model for  
non-instantaneous deteriorating items with stock dependent demand under inflation and 
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partial backlogging. They applied particle swarm optimisation to get the optimal solution. 
Recently, Bhaula et al. (2019) studied a model for non-instantaneous deteriorating items 
under permissible delay in payment. They allowed successive price discount in selling 
price to increase selling of items during the replenishment cycle which is generally 
observed in present competitive market. 

The classical inventory models are mainly developed by assuming that inventory 
manager has single storage facility called own warehouse (OW) with infinite capacity. 
But thinking in more practical terms, when suppliers offering concession on bulk 
purchases or high demand of items or seasonality, inventory manager may decide to 
purchase goods in large quantity at a time. To store excess of the items purchased, we 
need another storing facility. This extra storage facility is generally taken on hire basis 
called rented warehouse (RW), which is assumed to hold goods abundantly. The effect of 
two-warehouse on inventory policy was first discussed by Hartley (1976). He developed 
a model with constant demand without allowing shortages. Sarma (1987) further 
modified his model allowing fully backlogged shortages. Pakkala and Achary (1992) 
proposed a production inventory model for deteriorating items with constant demand. 
Later, Bhunia and Maiti (1998) and Lee and Ying (2000) developed two-warehouse 
deteriorating inventory models with time dependent demand. Yang (2006) proposed a 
two-warehouse inventory model with constant demand and inflation under partial 
backlogging. Bhunia et al. (2015), Gayen and Pal (2009) and Shabani et al. (2016)  
also considered deterioration from the time of arrival of goods in their developed  
two-warehouse inventory models. However, Jaggi et al. (2015) developed two-warehouse 
model for non-instantaneous deteriorating items assuming constant demand and complete 
backlogging under FIFO policy. Palanivel and Uthayakumar (2016) proposed a  
two-warehouse model for non-instantaneous deteriorating items with constant demand 
and inflation over finite time horizon and partial backlogging. Palanivel et al. (2016) 
further extended the work of Palanivel and Uthayakumar (2016) considering stock 
dependent demand. Tiwari et al. (2016) proposed a two-warehouse model for  
non-instantaneous deteriorating items under trade credit policy. Udayakumar and Geetha 
(2018) also studied a two-warehouse model for non-instantaneous deteriorating items 
under trade credit policy. Shaikh et al. (2019a) considered a two-warehouse inventory 
model for non-instantaneous deteriorating items under inflationary conditions with stock 
dependent demand. 

In all the inventory models discussed above, the deterioration rate is either constant or 
variable, which is not subject to control. But this deterioration may be put under control 
and reduced by applying a suitable preservation technology. For instance, refrigeration 
equipment is used in supermarket to reduce the deterioration rate of fruits, vegetables and 
sea-foods. Drying, cooling, heating, vacuum packing, etc. are some examples of the 
preservation techniques. So far as our survey is concerned, Hsu et al. (2010) were 
probably the first to develop a single storage inventory model for deteriorating 
(instantaneous) items using preservation technology allowing inventory manager to 
invest a certain amount per cycle to reduce deterioration rate. They considered demand to 
be constant and backlogging rate is a linear function of waiting time. Dye and Hsieh 
(2012) extended Hsu et al.’s (2010) model by assuming time-varying deterioration rate 
and preservation technology cost as a function of replenishment cycle length. Hsieh and 
Dye (2013) proposed a single storage production inventory model under preservation 
technology with time dependent demand. Dye (2013) studied the effect of preservation 
technology on non-instantaneous deteriorating items under partial backlogging with 
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constant demand rate and preservation cost as a function of replenishment cycle length. 
He and Huang (2013) developed a single storage inventory model for seasonable 
deteriorating products with price dependent demand under the use of preservation 
technology. Mishra (2014) also studied non-instantaneous deteriorating items under the 
use of preservation technology. The author assumed demand is a linear function of time, 
and allowed partial backlogging during shortage period. Singh and Rathore (2015) 
developed a single storage optimal policy for deteriorating items under preservation 
technology, constant inflation, time dependent demand and trade credit. Tsao (2016) 
considered a model for non-instantaneous deteriorating items with stochastic demand 
under the use of preservation technology. Mishra et al. (2017) developed a single storage 
inventory model for deteriorating item over finite time horizon. The authors considered 
demand as price and stock dependent, and studied the model under both partial and 
complete backlogging. Shah et al. (2018) studied the effect of preservation technology 
investment on customer service level. They considered demand to depend on time, selling 
price, service level, and derived analytical form of dynamic service investment using 
Pontryagin’s maximum principle. Pal et al. (2018) have proposed an optimal inventory 
policy with constant demand for non-instantaneous deteriorating items. In their model, 
the authors considered deterioration start time as random variable and preservation 
technology is used to reduce the deterioration rate. Bardhan et al. (2019) also used 
preservation technology on non-instantaneous deteriorating items to develop a single 
storage inventory model with stock dependent demand. Recently, Singh (2019) proposed 
a production model to study the effect of preservation technology on total cost. The 
model was solved analytically with and without shortages, and found to be suitable for 
items with finite shelf-life. 

Demand of an item is also a major concerning point for an inventory manager. In 
literature, we have seen different types of demand to exist. Demand may be constant or 
function of other variables like time, stock, selling price, advertisement cost, etc. In 
today’s competitive world, apart from quality, selling price of an item plays an important 
role in customer’s demand. It is one of the decisive factors to the customers for 
purchasing an item. It is seen that almost all products are price sensitive that is, increase 
in selling price decreases demand and decrease in selling price increases demand. Also, 
demand is seen to vary with time. Thus, it is quite practical to consider demand to depend 
jointly on time and selling price of the item. In the recent years, price and time dependent 
demand has drawn considerable attention of researchers. Chang et al. (2006), Farughi  
et al. (2014), Maihami and Kamalabadi (2012), Valliathal and Uthayakumar (2011) and 
You (2005) are some notable contributions related to price and time dependent demand. 
Recently, Saha and Sen (2019) have developed an EOQ model for deteriorating items 
with price and time dependent demand, negative exponential inflation rate and partial 
backlogging. Shah and Naik (2018) developed a single warehouse EOQ model for 
deteriorating items with price and time dependent demand under full advance payment 
with or without shortages. They studied the model under preservation technology 
investment to see its effect on average total profit of the system. Rathore et al. (2018) 
have proposed a two-warehouse inventory model with advertisement, time and price 
dependent demand under the use of preservation technology. To authors’ knowledge, a 
few research papers have been reported in literature in connection with price and time 
dependent demand, preservation technology investment for two-warehouse inventory 
system. A comparison of models with single or two-warehouse for instantaneous and 
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non-instantaneous deteriorating items under preservation technology investment has been 
presented in Table 1. 

While formulating mathematical model for decision making, it is generally assumed 
that demand, deterioration and inventory costs like holding cost, ordering cost, 
deterioration cost, etc. are precise or constant. However, in reality, we often come across 
the situations, especially in engineering design problems, management problems, where it 
is difficult to get exact value of the parameters. This may be due to human error or lack 
of sufficient data or fluctuation in data or unexpected situations. So, in order to deal with 
such impreciseness or uncertainty in parameters, generally, researchers use stochastic 
approach or fuzzy approach or fuzzy-stochastic approach or interval approach. In 
stochastic approach, parameters are assumed as random variables with known probability 
distribution whereas in fuzzy approach parameters are assumed as fuzzy sets with 
suitable membership function. Roy et al. (2009) developed an inventory model with stock 
dependent demand and random planning horizon. Bhunia and Shaikh (2011) used 
Weibull distribution for deterioration in their paper. Duari and Chakrabarti (2016) also 
developed two-warehouse inventory model with Weibull distribution for deterioration 
and considered stock dependent demand. Saha and Sen (2017) proposed an inventory 
model where deterioration follows uniform, beta and triangular distributions. But, it is not 
always possible to estimate a probability distribution function due to lake of historical 
data, as for example, the case of newly launched products. That is why many researchers 
have developed models in fuzzy environment. Chang et al. (1998) proposed an economic 
reordering point model for fuzzy backordered quantity. After that, Yao et al. (2000) 
developed a fuzzy EOQ inventory model with fuzzy order quantity and fuzzy total 
demand quantity. Sen et al. (2016) discussed a fuzzy inventory model considering 
triangular fuzzy numbers. Very recently, Indrajitsingha et al. (2019) developed a  
two-warehouse inventory model with fuzzy approach, where holding cost, deterioration 
rate, shortage cost and lost sale cost are considered as triangular fuzzy numbers. 
However, it is not always an easy task to select a suitable membership function. 
Therefore, in such cases, interval numbers may come out to be effective because of its 
simplicity in representing impreciseness of parameters. For this reason, interval number 
approach is growing interest among the researchers over the recent years. In the next 
paragraph, a discussion on some important interval related works is done. 

Gupta et al. (2007) developed an inventory model under interval uncertainty with 
demand depending on selling price, display stock level and frequency of advertisement. 
They used genetic algorithm (GA) to obtain the optimum solution. Gupta et al. (2009) 
further developed a model with uniform demand where cost parameters are taken as 
interval number. They proposed a RCGA with ranking selection to obtain the optimal 
solution. Chakrabortty et al. (2010) used multisection technique and interval order 
relation to solve a purchasing inventory model. They considered holding cost, ordering 
cost and demand as interval numbers. Chakrabortty et al. (2013) also proposed an EOQ 
model under interval uncertainty. They considered inventory costs, ordering quantity and 
demand as interval numbers. They proposed an optimisation technique based on division 
criteria of prescribed/accepted search region. Bhunia and Shaikh (2016) proposed a  
two-warehouse inventory model under inflation and linear time dependent demand. They 
assumed interval valued inventory cost and used particle swarm optimisation technique to 
obtain the optimal solution. A partially integrated production-inventory model was 
developed by Bhunia et al. (2017) with selling price and marketing cost dependent 
demand, and interval valued inventory cost. They used PSO-CO to solve the problem. 
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Ruidas et al. (2018) also developed an EOQ model for defective items and used PSO-CO 
to solve the model. Shaikh et al. (2019b) proposed a two-warehouse model with advance 
payment scheme, price dependent demand and interval valued cost parameters. They 
obtained and compared solution by three variants of PSO (PSC-CO, WQPSO and 
GQPSO). Mondal et al. (2019) developed an EOQ model for ameliorating items 
following three-parameter Weibull distributed amelioration and deterioration. They 
considered advertisement and time dependent demand, and interval valued inventory cost 
parameters. They studied the model under both crisp and interval environment. They used 
three variants of QPSO to solve the model in both the environments. Recently, Rahman  
et al. (2020b) introduced a new type of interval number called type-2 interval number. To 
increase the flexibility, they considered the boundary of an interval as interval number. 
They extended the earlier definition and proposed new definition of interval arithmetic 
and order relation for type-2 interval numbers. Further, they applied this concept to solve 
classical EOQ model. 

As we know, in interval approach imprecise parameters are generally represented by 
interval numbers. As a result, two separate objective functions corresponding lower and 
upper limit of an interval are formulated, which leads to multi-objective formulation. 
Thus, existing classical or iterative methods cannot used to get optimal solution. For this, 
heuristic or meta-heuristic search methods are generally employed to obtain optimal 
solution with the help of interval arithmetic and interval order relation (Karmakar and 
Bhunia, 2012). Instead of formulating two separate objective functions, parametric 
functional form representation of interval number may be used to convert interval valued 
parameters so that we get a closed form of expression of the objective function, which 
can be solved by existing classical or iterative techniques. This concept of parametric 
functional form has already been used in Mahapatra and Mandal (2012), Pal et al. (2013) 
and Pal and Mahapatra (2016, 2017). In the field of inventory control theory, for the first 
time, this concept was incorporated by Das and Roy (2018). They developed a single 
storage EOQ model for non-instantaneous deteriorating items considering inventory costs 
as interval numbers. They used parametric functional form to remove the interval 
uncertainty of the parameters. 

3 Research gap and objective 

In the existing literature of inventory modelling, lots of research models have been 
developed in crisp and fuzzy environments and some in stochastic environment. In the 
recent decade, some significant contributions have also been made in inventory control 
theory for instantaneous deteriorating items in the interval environment. But, a few have 
been developed for non-instantaneous deteriorating items (Das and Roy, 2018; Shaikh  
et al., 2019a). So, motivated by the works of Das and Roy (2018), Rathore et al. (2018), 
Shah and Naik (2018) and based on the above literature review, we have observed that no 
one has studied two-warehouse inventory model for non-instantaneous deteriorating 
items in the context of price and time dependent demand with preservation technology, 
when inventory cost parameters and coefficients of demand are imprecise (interval 
uncertainty) in nature. Thus, in this paper, an attempt has been made to fill up this gap. 
The developed model is a two-warehouse EOQ model for non-instantaneous deteriorating 
items that embodies the following features: 



   

 

   

   
 

   

   

 

   

    A partially backlogged two-warehouse EOQ model 157    
 

    
 
 

   

   
 

   

   

 

   

       
 

1 Demand is selling price and time dependent. 

2 Preservation technology investment is incorporated to reduce deterioration rate. 

3 Shortages are allowed to occur and are partially backlogged. The rate of backlogging 
depends upon waiting time to the next replenishment. 

4 Coefficients of demand function and all the inventory cost parameters: holding costs, 
deterioration costs, shortage cost and lost sale cost are constant but imprecise. The 
impreciseness of the parameters is presented in terms of interval number. 

5 Parametric functional form representation of interval is used to remove 
impreciseness of the parameters. 

Based on these above features, the corresponding total average cost function is 
formulated. The objective of this research work is to determine an optimal ordering 
policy that is to find optimal ordering quantity, optimal replenishment time, optimal 
pricing and optimal preservation technology investment simultaneously so that the 
present worth of the total average cost of the system is minimised. The proposed model 
will be useful to the retailers or decision makers because it will help them in taking 
important replenishment decisions. 

The rest of the paper is organised as follows: in Section 4, a detailed description of 
assumptions and notations used in this paper is provided. In Section 5, mathematical 
model is formulated and total average cost is calculated. In Section 6, solution procedure 
is discussed. In Section 7, a numerical example is taken to illustrate the model. In  
Section 8, sensitivity analysis is carried out to study the effects of changes in different 
parameters of the system. Finally, in Section 9, conclusions are drawn and future research 
direction is indicated. 

4 Assumptions and notations 

To develop the model, the following assumptions are made. 

4.1 Assumptions 

• The model deals with single non-instantaneous type of deteriorating item over a 
period. 

• Demand is selling price and time dependent, where the coefficients of the demand 
functions are constant but imprecise. 

• Planning horizon is infinite. 

• Lead time is zero. 

• Replenishment rate is infinite. 

• The system involves a two-warehouse system, one is OW with limited capacity and 
other is RW with infinite capacity. For economic reasons, items are first consumed 
from RW, and then from OW. 
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• Deterioration comes into play after a certain period of time, and the rates of 
deterioration are different for warehouses. 

• The holding costs per time per unit, deterioration costs per unit, shortage cost per 
time per unit and lost sale cost per time per unit are assumed to be constant but 
imprecise. 

• Holding cost at RW is higher than that of OW due to better preserving facility at 
RW. OW is situated at the heart of the market and RW is little away from the market 
place. 

• Transportation cost and transportation time are negligible. 

• There is no repair or replacement of the items. 

• Shortages are allowed and are partially backlogged. The backlogging rate is 
dependent on the length of waiting time for next replenishment. 

• Preservation technology is used in order to control the loss due to deterioration. 

4.2 Notations 

The following notations are used throughout this paper. 

4.2.1 Decision variables 
p per unit selling price of the item 

tr time at which inventory level in RW reaches to zero 

t0 time at which inventory level in OW reaches to zero 

T cycle length 

ξ preservation technology cost per unit time. 

4.2.2 Parameters 
ˆ ( , )D p t  demand rate of the form ˆˆ ˆa bp ct− +  where ˆˆ,a b  and ĉ  are constants 

but imprecise 

1( )
1 ( )

B t
δ T t

=
+ −

 backlogging rate where δ ∈ (0, 1) is the backlogging parameter and 

T – t is the waiting time t0 ≤ t ≤ T 

W capacity of OW 

td time after which deterioration of the item starts 

ST maximum amount of demand backlogged per cycle 

Q quantity to be ordered at the beginning of the cycle 

Q0(t) OW inventory level at any time t ∈ [0, t0] 
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Qr(t) RW inventory level at any time t ∈ [0, tr] 

Qs(t) inventory level at any time t ∈ [0, t0] 

m(ξ) = 1 – e–γξ portion of reduced deterioration rate where γ > 0 

θRW deterioration rate at RW, 0 < θRW << 1 

θOW deterioration rate at OW, 0 < θOW << 1, θOW > θRW 

τi = θi(1 – m(ξ)) resultant deterioration rate, i = RW, OW 

A ordering cost per order 

x per unit purchasing cost of the item, p > x 

1 1ˆ [ , ]RWH h L h R=  imprecise holding cost per time per item in RW 

2 2ˆ [ , ]OWH h L h R=  imprecise holding cost per time per item in OW 

1 1
ˆ [ , ]RWd d L d R=  imprecise deterioration cost per item in RW 

2 2
ˆ [ , ]OWd d L d R=  imprecise deterioration cost per item in OW 

ˆ [ , ]c c cS S L S R=  imprecise shortage cost per time per item 

ˆ [ , ]c c cL L L L R=  imprecise lost sale cost per time per item 

TAC total average cost per cycle. 

5 Mathematical model formulation 

In this section, the mathematical model based on the assumptions and notations made in 
Section 4 is developed, and total average cost is calculated. The considered model is a 
two-warehouse inventory model for a single non-instantaneous deteriorating item with 
partial backlogging. The model is described as follows: at t = 0, a lot of size Q units enter 
the system. A portion ST of it is used to clear all the backorders. Let Q = S + ST so that on 
hand inventory level at the beginning of the cycle is S. Out of these S units, W units are 
kept in OW, and the rest that is S – W units are stored in the RW. The items of OW will 
be consumed only after consuming the items stored in RW. Since the deterioration is 
non-instantaneous, initially, the items do not deteriorate up to the time period td and then 
after the deterioration of items starts. Therefore, in the RW, during the time interval  
[0, td], the inventory level decreases only due to demand, and the inventory level further 
depletes due to joint effect demand and deterioration during the time interval [td, tr]. At  
t = tr, the inventory level in the RW drops to zero. Whereas, in the OW, during the time 
interval [0, td], the inventory level remains unchanged. And during the time interval  
[td, tr], the inventory level in OW is depleted only due to deterioration. Further, during the 
time interval [tr, t0], the inventory level in OW decreases due to combine effect of 
demand and deterioration, and finally it drops to zero at t = t0. In the shortage period  
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[t0, T], demand is partially backlogged at the rate 1 .
1 ( )δ T t+ −

 The behaviour of the 

inventory model during the period is demonstrated in Figure 1. 

Figure 1 Graphical representation of a two ware house inventory model 
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Since the inventory level in RW decreases during [0, td] only due to demand, the 
differential equation representing the inventory level is given by: 

ˆ 0, 0r
d

dQ D t t
dt

+ = ≤ ≤  (1) 

With the condition Qr(0) = S – W, the solution of equation (1) is 

( ) 2ˆˆˆ( ) , 0
2r d
cQ t S W a bp t t t t= − − − − ≤ ≤  (2) 

In the next interval [td, tr], the inventory level in RW decreases due to demand and 
deterioration. Therefore, the governing differential equation is as below: 

ˆ 0,r
RW r d r

dQ τ Q D t t t
dt

+ + = ≤ ≤  (3) 

With the boundary condition Qr(tr) = 0, the solution of equation (3) is 

( ) ( ){ } 2
3

1
ˆˆ ˆˆ ˆ ˆ( ) ,

2 2
RW RWRWτ t τ t

r RW d r
t cτQ t e a bp t τ a bp c t e A t t t− − = − − + − + + + ≤ ≤  

 (4) 

where 
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( ) ( ){ } 2
3

1
ˆˆ ˆˆ ˆ ˆ

2 2
r RW

r RW r
t cτA a bp t τ a bp c t= − + − + +  (5) 

Since Qr(t) is continuous at t = td, putting t = td in equations (2) and (4), the value of 
maximum inventory level per cycle (S) is calculated as below: 

( )( ) ( ){ } ( ) ( )

( )

2 2
3 3

2

ˆˆ ˆˆ ˆ ˆ
2 2

ˆˆˆ
2

RW
r RWdτ t

r d RW r d

d d

t t cτS e a bp t t τ a bp c t t W

ca bp t t

−
 −

= − − + − + + − + 
 

+ − +
 (6) 

In OW, during the time interval [0, td], there is no change in the inventory level, and 
during [td, tr], the inventory level decreases due deterioration only. Therefore, the 
corresponding differential equations are: 

0 0, 0 d
dQ t t
dt

= ≤ ≤  (7) 

0
0 0,OW d r

dQ τ Q t t t
dt

+ = ≤ ≤  (8) 

The solutions to equations (7) and (8) with the boundary conditions Q0(0) = W and  
Q0(td) = W are given below: 

0 ( ) , 0 dQ t W t t= ≤ ≤  (9) 

( )
0 ( ) ,OW dτ t t

d rQ t We t t t−= ≤ ≤  (10) 

During [tr, t0], the inventory level in OW depletes due to both demand and deterioration. 
Thus, the rate of change in the inventory level is given by: 

0
0 0ˆ 0,OW r

dQ τ Q D t t t
dt

+ + = ≤ ≤  (11) 

With the boundary condition Q0(t0) = 0, we obtain the solution to equation (11) as below: 

( ) ( ){ } 2
3

0 2 0
ˆˆ ˆˆ ˆ ˆ( ) ,

2 2
OW OWOWτ t τ t

OW r
t cτQ t e a bp t τ a bp c t e A t t t− − = − + − + + + ≤ ≤  

 (12) 

where 

( ) ( ){ } 2
0 3

2 0 0
ˆˆ ˆˆ ˆ ˆ

2 2
OW

OW
t cτA a bp t τ a bp c t= − + − + +  (13) 

Considering the continuity of Q0(t) at t = tr, we get the following relation from  
equations (10) and (12): 

2 1 OW dτ tA A We= +  (14) 
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Again, during the interval [tr, T], the shortages occur and demand is partially backlogged 

at the rate 1 .
1 ( )δ T t+ −

 The differential equation representing the inventory level is given 

by 

0ˆ 0,sdQ BD t t T
dt

+ = ≤ ≤  (15) 

Using the boundary condition Qs(t0) = 0, the solution to equation (15) is obtained as 
below: 

( )
2 2
0

0 0( ) ,
2s

t tQ t K t t M t t T−
= − + ≤ ≤  (16) 

where 

( ) ( )2ˆ ˆˆ ˆ ˆ ˆ( 1)  and ( 1)K a bp δT cT δ M a bp δ c δT= − − + = − + +  (17) 

Putting t = T in equation (16), we get the maximum backordered inventory as below: 

2 2
0 0( )

2 2T s
M MS Q T KT Kt t T = − = − − + −  

 (18) 

Therefore, from equations (6) and (18), the quantity to be ordered per cycle is: 

( )( ) ( ){ } ( ) ( )

( )

2 2
3 3

2 2 2
0 0

ˆˆ ˆˆ ˆ ˆ
2 2

ˆˆˆ
2 2 2

RW d

T

r RWdτ t
r d RW r d

d d

Q S S

t t cτe a bp t t τ a bp c t t

c M MW a bp t t KT Kt t T

−

= +

 −
= − − + − + + − 

 

+ + − + − + − +

 (19) 

Let 1 2 1 2 1 2
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ, ( ) , ( ) , ,RW OW RW OWa a a bp b τ a bp c b τ a bp c c cτ c cτ= = − = − + = − + = =  

( ) ( ){ } 2
3

1 3
ˆˆ ˆˆ ˆ ˆ and .

2 2
RWd

OW d d RW d
t cτW W Wτ t A a bp t τ a bp c t= + = − + − + +  (20) 

Since 1,iγξ
i i iγξ

θτ θ e θ
e

−= = ≤ <<  by using Taylor’s expansion and neglecting higher 

order terms, we get 1iτ t
ie τ t− = −  and 1 ,iτ t

ie τ t= +  where i = RW, OW. For simplicity of 
calculations, these approximations and the notations made in equation (20) will be used 
to calculate expressions for different costs involved in the system. 

The total average cost per cycle has the following elements: 

1 Since the replenishment is done at the beginning, ordering cost per cycle is OC = A. 

2 The inventory holding cost in RW during [0, T] is 
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( ) ( )( ){ }

0

0

2 3 2
1 1 3

2 3 4 2 3 4 2
1 1 1 1 1 1 1 1 1

3
1 1

ˆ ( )

ˆ ˆ( ) ( )

1 1 1ˆˆ ˆ ˆ 1
2 6 2

1 1 1 1 1 1 1
2 6 8 2 6 8 2

1 1
3 8

r

d r

d

t

RW RW r

t t

RW r RW r

t

RW d d d d RWd d d

d r r r r RWd d d d

RWd

HC H Q t dt

H Q t dt H Q t dt

H Wt a t ct t W a bp t ct A A t τ

At a t b t c t A t a t b t c t A t τ

a t τ b t

=

= +

= − − − + + + + + − −

− + + + + − − − +

− −



 

4 5 2 3 4
1 1 1 1

5
1

1 1 1 1
10 2 3 8

1
10

RW RW r RW r RW r RWd d

r RW

τ c t τ At τ a t τ b t τ

c t τ

− − + +

+ 

 

3 The inventory holding cost in OW during [0, T] is 
0

0

0

0 0 0

0

2 2 2 3
1 1 2 0 2 20 0

4 2 3 4 2 3 4
2 2 2 2 2 2 2 20 0 0 0

ˆ ( )

ˆ ˆ ˆ( ) ( ) ( )

1 1 1 1ˆ
2 2 2 6

1 1 1 1 1 1 1
8 2 6 8 2 3 8

d r

d r

t

OW OW r

t tt

OW OW OW

t t

OW d r OW r OWd

r r r r OW OW OW

HC H Q t dt

H Q t dt H Q t dt H Q t dt

H t W t W Wt τ Wt τ A t a t b t

c t A t a t b t c t A t τ a t τ b t τ

=

= + +

= − + + − + − −

− − + + + − + +

+



  

5 2 3 4 5
2 2 2 2 20

1 1 1 1 1
10 2 3 8 10OW r OW r OW r OW r OW tdc t τ A t τ a t τ b t τ c t τ W + − − − + 

 

4 The deterioration cost in RW during [0, T] is 

2 3 4 2 3 4
1 1 1 1 1 1 1 1

2 3 4 5 2 3
1 1 1 1 1 1

4 5
1 1

ˆ ( )

1 1 1 1 1 1ˆ
2 6 8 2 6 8

1 1 1 1 1 1
2 3 8 10 2 3
1 1
8 10

r

d

t

RW RW RW r

t

RW RW d r r r rd d d

RW RW RW RW r RW r RWd d d d

r RW r RW

DC d τ Q t dt

d τ A t a t b t c t A t a t b t c t

A t τ a t τ b t τ c t τ A t τ a t τ

b t τ c t τ

=

= − + + + + − − −

+ − − − − +

+ + 



 

5 The deterioration cost in OW during [0, T] is 
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0

0

0

0 0

2 2 2 3
1 1 2 0 2 20 0

4 2 3 4 2 3
2 2 2 2 2 2 20 0 0

4
2 0

ˆ ( )

ˆ ˆ( ) ( )

1 1 1 1ˆ
2 2 2 6

1 1 1 1 1 1
8 2 6 8 2 3
1 1
8 10

d

r

d r

t

OW OW OW

t

tt

OW OW OW OW

t t

OW OW d r OW r OWd

r r r r OW OW

OW

DC d τ Q t dt

d τ Q t dt d τ Q t dt

d τ t W t W Wt τ Wt τ A t a t b t

c t A t a t b t c t A t τ a t τ

b t τ

=

= +

= − + + − + − −

− − + + + − +

+ +



 

5 2 3 4 5
2 2 2 2 20

1 1 1 1
2 3 8 10OW r OW r OW r OW r OWc t τ A t τ a t τ b t τ c t τ + − − − 

 

6 The shortage cost involved in the system is 

( ) ( ) ( ) ( )
0

2 2 2 3 3
0 0 00 0 0

ˆ ( )

ˆ
2 2 6

T

c s

t

c

SC S Q t dt

K M MS T t Kt T t t T t T t

= −

 = − − − − + − − −  


 

7 The lost sale cost due to partial backlogging is 

[ ]

( ) ( )
0

2 2 2 2
0 0 00 0

ˆ 1 ( )

ˆ ˆˆ ˆˆ ˆˆ ˆ
2 2 2

T

c

t

c c

LSC L B t Ddt

c c ML aT bpT T at bpt t L K T t t T

= −

   = − + − + − + − + −      


 

8 The purchase cost is 

( ) ( )( )2 2 2
1 3 0 0

ˆˆˆ 1
2 2 2d RW dd

PC xQ
c M Mx W a bp t t τ t A A KT Kt t T

=

 = + − + + − − − + − +  

 

9 The preservation technology investment is 

PTI Tξ=  

Thus, adding all these costs calculated above, we get the total average cost per cycle as 
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( )0
1, , , , [ordering cost holding cost in OW

deterioration cost in RW deterioration cost in OW shortage cost
lost sale cost purchase cost preservation technology investment]
1

r

RW OW RW

TAC p t t T ξ
T

OC HC HC DC
T

= = +

+ + +
+ + +

= + + +[ ]

2 3 4 2 3 4
1 1 1 1 1 1 1 1

2 3 4 5 2 3
1 1 1 1 1 1

4 5
1 1

1 1 1 1 1 1 1ˆ
2 6 8 2 6 8

1 1 1 1 1 1
2 3 8 10 2 3
1 1 ˆ
8 10

RW

RW RW d r r r rd d d

RW RW RW RW r RW r RWd d d d

r RW r RW OW OW d

DC SC LSC PC PTI

A d τ A t a t b t c t A t a t b t c t
T

A t τ a t τ b t τ c t τ A t τ a t τ

b t τ c t τ d τ t W

+ + + + +

 = + − + + + + − − − 

+ − − − − +

+ + + −
2 2

1 1

4 2 3 4 2 3 4
2 0 2 2 2 2 2 2 2 20 0 0 0

2 3 4 5 2 3
2 2 2 2 2 20 0 0 0

4 5
2 2

1 1
2 2

1 1 1 1 1 1 1
8 2 6 8 2 6 8

1 1 1 1 1 1
2 3 8 10 2 3
1 1 1ˆ
8 10 2

r OW r OWd

r r r r

OW OW OW OW r OW r OW

r OW r OW RW d

t W Wt τ Wt τ

A t c t a t b t c t A t a t b t c t

A t τ a t τ b t τ c t τ A t τ a t τ

b t τ c t τ H Wt

 + + −

+ − − − − − + + +

− + + + + −

− − + − −
( )

( )( )}
2 3

1

2 2 3 4 2
1 3 1 1 1 1 1 1

3 4 2 3 4 5 2
1 1 1 1 1 1 1

3 4 5
1 1 1

1 ˆˆ ˆ
6

1 1 1 1 11
2 2 6 8 2
1 1 1 1 1 1 1
6 8 2 3 8 10 2
1 1 1
3 8 10

d dd d

d RW d r rd d d d

r r RW RW RW RW r RWd d d d

r RW r RW r RW

a t ct t W a bp t

ct A A t τ A t a t b t c t A t a t

b t c t A t τ a t τ b t τ c t τ A t τ

a t τ b t τ c t τ

 
− + + +



+ + − − − + + + + −

− − + − − − −

+ + + 2
1 1

2 2 3 4 2 3 4
2 0 2 2 2 2 2 2 20 0 0

2 3 4 5 2 3
2 2 2 2 2 20 0 0 0

4 5
2 2

1ˆ
2

1 1 1 1 1 1 1
2 2 6 8 2 6 8
1 1 1 1 1 1
2 3 8 10 2 3
1 1 ˆ
8 10

OW d r OWd

r OW r r r r

OW OW OW OW r OW r OW

r OW r OW td c

H t W t W Wt τ

Wt τ A t a t b t c t A t a t b t c t

A t τ a t τ b t τ c t τ A t τ a t τ

b t τ c t τ W S

 + − + + 

− + − − − − + + +

− + + + + −

− − + −
( ) ( )

( ) ( )

( ) ( ) ( )

( )( )

2 2
0 00

2 3 3 2 2
0 0 00 0 0

2 2 2
0 0

2 2
1 3 0 0

2
ˆ ˆˆ ˆˆ ˆ ˆ

2 6 2 2
ˆˆˆ ˆ

2 2

1
2 2

c

c d d

RW d

K T t Kt T t

M M c ct T t T t L aT bpT T at bpt t

M cL K T t t T x W a bp t t

M Mτ t A A KT Kt t T Tξ

 − − −
  + − − − − + − + −   

  + − + − + + − +    
+ − − − + − + +  

 

Our objective is to minimise TAC, which is a function of five variables. The necessary 
condition for optimal solution is 

0
0, 0, 0, 0 and 0

r

TAC TAC TAC TAC TAC
p t t T ξ

∂ ∂ ∂ ∂ ∂= = = = =
∂ ∂ ∂ ∂ ∂

 (21) 
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The values of p, tr, t0, T and ξ obtained by solving equation (21) will be optimal if the 
Hessian matrix Hes given below is positive definite. 

2 2 2 2 2

2
0

2 2 2

2
0

2 2 2 2 2

2
0 0 0 00

2 2 2 2 2

2
0

2

r

r r r r r

es
r

r

TAC TAC TAC TAC TAC
p p t p t p T p ξ

TAC TAC TAC TAC TAC
t p t t t t T t ξ
TAC TAC TAC TAC TAC

H
t p t t t t T t ξ
TAC TAC TAC TAC TAC
T p T t T t T T ξ
TAC

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂
∂

2 2 2 2

2
0

.

r

TAC TAC TAC TAC
ξ p ξ t ξ t ξ T ξ

 
 
 
 
 
 
 
 
 
 
 
 
 ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 

6 Solution procedure 

In this work, parametric functional form representation (see Appendix 1) of interval 
number is used to represent the imprecise parameters. Interval parameters have been 
represented in parametric form as an expression and used to find the total average cost of 
the system. Normally, using the interval, two separate objective functions are formulated 
corresponding to lower and upper limits of an interval whose optimisation requires 
heuristic or meta-heuristic search methods. Here, the parametric approach is used to get 
the closed form of expression of the objective function, which leads to a single objective 
optimisation problem, and hence can be solved by exiting classical or numerical methods. 
This approach of parametric functional form has been used in Das and Roy (2018). As 
the objective function in our model is highly nonlinear in nature, it is not possible to 
solve it analytically. So, we have solved the model numerically. The following steps are 
adopted to get the optimal values of p, tr, t0, T, ξ, Q and TAC. 

Algorithm 

Step1 Set the parameters: A, td, W, x, δ, γ, θRW and θOW. 

Step 2 Set the imprecise values of ˆ ˆ ˆ ˆˆ ˆˆ ˆ, , , , , , ,RW OW RW OW ca b c H H d d S  and ˆcL  in terms of 
interval numbers. 

Step 3 Find the values of a(m), b(m), c(m), HRW(m), HOW(m), dRW(m), dOW(m), Sc(m) and 
Lc(m) using parametric functional form for a particular value of m. 

Step 4 Evaluate the total average cost function TAC. 

Step 5 Find the optimal values of the decision variables. 

Step 6 Calculate the optimal values Q* and TAC*. 
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7 Numerical illustration 

In this section, a numerical example is provided for illustrating the model. The following 
values of parameter are taken as input: 

Rs1000, 3 /12 0.25 yr., 200 units, Rs70 per unit, 0.02,
0.3, 0.015 and 0.5.

d

RW OW

A t W x δ
γ θ θ

= = = = = =
= = =

 

The imprecise values of inventory parameters represented by interval numbers are as 
follows: 

ˆ ˆˆˆˆ ˆ[1000, 1050], [2, 3], [1, 2], [4, 5], [2, 3], [1.5, 2],
ˆ ˆ ˆ[2, 4], [4, 6], [2, 3].

c c RW

OW RW OW

a b c L S d

d H H

= = = = = =

= = =
 

Using the parametric functional form for m = 0.5, we have, 

( ) 1024.7, ( ) 2.44949, ( ) 1.41421, ( ) 4.89898,
( ) 2.44949, ( ) 1.73205, ( ) 2.82843, ( ) 4.47214,

( ) 2.44949.

RW

OW RW OW c

c

a m b m c m H m
H m d m d m L m
S m

= = = =
= = = =

=
 

The optimal solution obtained is as below: 
* * * *

0
*

Rs199.516 Rs200, 0.41667 yr., 2.13094 yr., 2.46427 yr.,
Rs10.

rp t t T
ξ

= ≈ = = =
=

 

And the optimal values of the ordering quantity and total average cost are respectively 
* 602.865 603 units, Rs21599.1 Rs21600.Q TAC= ≈ = ≈  

The above optimal solution is obtained for m = 0.5. The reason for taking m = 0.5 is that 
corresponding to m = 0.5, we get the least total average cost among the optimal solutions 
(presented in Table 2) obtained for different values of m. Moreover, in Table 2, along 
with the optimal solutions, we represent the approximate values of a(m), b(m), c(m), 
HRW(m), HOW(m), dRW(m), dOW(m), Sc(m) and Lc(m) using parametric functional form for 
different values of m. The benefit of varying m from 0 to 1 is that we use lower, 
intermediate and upper bounds of the interval valued parameters to obtain the 
corresponding optimal solutions of the model. It is observed from Table 2 that when m 
increases from 0 to 0.4, there are some fluctuations in the optimal values TAC*. The same 
trend is also observed in case of * * *

0 , ,t T p  and Q*. But when m moves from 0.5 to 1, 
TAC* as well as Q* increases. Whereas the values of * *

0 ,t T  and p* decrease when m 
moves from 0.5 to 1. Some fluctuations in the values of *

rt  and ξ* are observed when m 
moves from 0 to 1. Graphical representations of the optimal values with respect to 
different values of m are given in Appendix 2. In the next section, we perform sensitivity 
analysis of the optimal solution obtained for m = 0.5. 
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Table 2 Optimal solutions obtained for different values of m 
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8 Sensitivity analysis 

In this section, to study the effect of changes in the parameters values on the optimal 
values, we perform sensitivity analysis. These analyses have been carried out by 
changing one parameter by ±5% and ±10% at a time and keeping other parameters at 
their original values. The results of these analyses are shown in Table 3 to Table 8. 
Table 3 Sensitivity table for A 

 A *
rt  *

0t  T* ξ* p* Q* TAC* 

10% 1,100 0.416667 2.05231 2.38564 10 108.988 769.749 28,194.9 
5% 1,050 0.416667 2.06515 2.39848 10 133.766 724.229 26,387.5 
0% 1,000 0.41667 2.13094 2.46427 10 199.516 602.865 21,599.1 
–5% 950 0.468247 3.07203 3.43032 10.0101 264.386 513.318 21,040.5 
–10% 900 0.577903 1.92417 2.77241 10.8231 274.194 704.846 20,511.1 

Table 4 Sensitivity table for θRW 

 θRW *
rt  *

0t  T* ξ* p* Q* TAC* 

10% 0.0165 0.416668 2.07175 2.40509 10 134.395 722.418 26,321.5 
5% 0.01575 0.416667 2.07578 2.40911 10 133.573 723.904 26,380.7 
0% 0.015 0.41667 2.13094 2.46427 10 199.516 602.865 21,599.1 
–5% 0.01425 0.417579 2.1081 2.44053 10.001 181.679 635.061 22,907.6 
–10% 0.0135 0.416667 2.07467 2.408 10 148.643 696.19 25,291.3 

Table 5 Sensitivity table for θOW 

 θOW *
rt  *

0t  T* ξ* p* Q* TAC* 

10% 0.55 0.496701 2.10664 2.71841 8.9765 112.269 1,031.11 30,068.2 
5% 0.525 0.496923 1.88601 2.36723 10.3177 159.976 819.918 28,827.3 
0% 0.5 0.41667 2.13094 2.46427 10 199.516 602.865 21,599.1 
–5% 0.475 0.518639 1.76474 2.55244 10.3144 275.612 657.583 19,588 
–10% 0.45 0.54142 1.83367 2.61667 11.1094 285.542 632.094 18,941.7 

Table 6 Sensitivity table for x 

 x *
rt  *

0t  T* ξ* p* Q* TAC* 

10% 77 0.417602 2.16311 2.49562 10.001 191.148 618.309 23,970.4 
5% 73.5 0.416667 2.07025 2.40358 10 91.7801 800.6 30,562.6 
0% 70 0.41667 2.13094 2.46427 10 199.516 602.865 21,599.1 
–5% 66.5 0.470724 0.944707 1.2765 11.9442 67.0482 891.435 48,569.6 
–10% 63 0.416667 2.02123 2.35456 10 142.334 707.779 23,671.3 
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Table 7 Sensitivity table for δ 

 δ *
rt  *

0t  T* ξ* p* Q* TAC* 

10% 0.022 0.416667 1.54859 1.88192 12 141.172 709.798 32,717.9 
5% 0.021 0.416667 2.10171 2.43504 10 167.626 661.356 23,916.4 
0% 0.02 0.41667 2.13094 2.46427 10 199.516 602.865 21,599.1 
–5% 0.019 0.416667 2.05904 2.39237 10 107.125 772.47 28,288.4 
–10% 0.018 0.416667 1.54867 1.882 12 141.196 709.906 32,720.9 

Table 8 Sensitivity table for W 

 W *
rt  *

0t  T* ξ* p* Q* TAC* 

10% 220 0.417651 2.07349 2.4059 10.001 110.005 787.203 28,631.5 
5% 210 0.416667 2.07232 2.40565 10 130.264 739.959 26,886.4 
0% 200 0.41667 2.13094 2.46427 10 199.516 602.865 21,599.1 
–5% 190 0.431673 2.04731 2.41747 10.1435 251.925 517.826 18,211.5 
–10% 180 0.436465 1.92869 2.26208 10.8963 279.923 442.009 17,121.7 

The following observations can be obtained from Table 3 to Table 8: 

• TAC* increases with the increase in the parameters A which is quite apparent. At 
first, it increases gradually (for –10% to –0% change in A) then increases rapidly (for 
0% to 10% change in A). TAC* increases sharply with the increase in the parameter 
θOW, which is fairly usual occurrence. Similar high increase in the values of TAC* is 
noticed with the increase of the parameter W. When the values of parameters θRW, δ 
and x increase, TAC* fluctuates very significantly. This indicates that TAC* is highly 
sensitive with regard to all the parameters A, θRW, θOW, x, δ and W. 

• Q* shows high rise in its values when W increases. Very significant variations in the 
values of Q* are also observed for the changes in the parameters θOW and x. However, 
Q* changes reasonably with the increase in A, θRW and δ. This means that Q* is 
highly sensitive with respect to θOW, x and W; moderately sensitive with respect to A, 
θRW and δ. 

• Similar analysis shows that the change in *
rt  with the increase in θOW is significant. 

When A changes from –10% to 0%, the value of *
rt  decrease reasonably but its value 

remains unchanged corresponding to 5% and 10% change in A. Moreover, *
rt  

changes slightly with the changes in x and W, and it remains almost static with the 
changes in θRW and δ. This specifies that tr is moderately sensitive with respect to A 
and θOW; less sensitive with respect to x and W; very less sensitive with respect to 
θRW and δ. 

• ξ* shows some fluctuations with the increase in the values of θOW and δ increase. But, 
when θRW increases, ξ* remains almost constant. Moreover, slight fluctuations in the 
values of ξ* are observed with changes in the values of the parameters A, x and W. 
This indicates that ξ* is moderately sensitive with regard to θOW and δ; less sensitive 
with regard to A, x and W; very less sensitive with regard to θRW. 
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• The shortage occurrence time *
0( )t  is highly sensitive to the changes in A, θOW, x, δ 

and W, it is moderately sensitive to the change in θRW. Similar trends are also 
observed for T*. That is, the replenishment time T* is highly sensitive with respect to 
A, θOW, x, δ and W; it is moderately sensitive with respect to θRW. 

• The effects of increase in the values of A, θOW and W on p* are very significant.  
p* decreases rapidly with the increase in the values of the mentioned parameters. 
Noticeable variations are also observed with the increase in the values of θRW, δ and 
x. Thus, similar to TAC*, p* is also highly sensitive with regard to all the parameters 
A, θRW, θOW, x, δ and W. 

9 Conclusions 

This paper considers a two-warehouse EOQ  model for non-instantaneous deteriorating 
items with price and time dependent demand under interval environment. The 
coefficients of demand and all inventory cost parameters are considered as interval 
numbers to represent the practical market situation as these are not always fixed in real 
life. Shortages have been allowed in the model to make a more realistic scenario, and are 
partially backlogged at the variable rate dependent on the length of waiting time to the 
next replenishment. Further, in order to reduce the deterioration rate, preservation 
technology investment is made in both the warehouses (RW and OW). In the present 
work, the concept of parametric functional form representation of interval numbers is 
used to find out total average cost of the model. The advantage of using parametric form 
is that we get a closed form of expression of the objective function, and can be solved by 
existing classical or numerical method. To authors’ best knowledge, this type of  
two-warehouse inventory model for non-instantaneous deteriorating items with price and 
time dependent demand, preservation technology under interval environment has not 
been reported yet in inventory literature. This work is very helpful to the retailers for 
decision making in the real market situations where the uncertainty in inventory cost 
parameters persists. The aim of this present study is to determine retailer’s optimal 
ordering policy so that present worth of the total average cost is minimised. The 
corresponding two-warehouse inventory model has been developed, and solved 
numerically due the high nonlinear nature of the objective function. Further, sensitivity 
analysis (in Section 8) is carried out to study the effects of different parameters on the 
optimal solution. Based on the analysis, we obtain some useful managerial insights that 
are highlighted through the following points: 

• As the increase in ordering cost increases the total cost per unit time significantly, it 
is advisable for the decision maker to make decision in lowering investment towards 
ordering cost. That is, if we curtail the ordering cost, then we may have significant 
amount of saving, and the total cost per unit time is automatically minimised. So, 
from practical aspect this model is valid. 

• As the unit purchasing cost has significant affects not only on total cost per unit time 
but also on ordering quantity (as observed form Table 6), it is advisable for the 
decision maker to perform sufficient analysis on unit purchase cost before buying 
items. 
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• As the capacity of OW decreases, total cost per unit time as well as ordering quantity 
decreases while the selling price increases (as observed from Table 8). Thus, the 
inventory manager should be encouraged to have OW of lower capacity in order to 
reduce the total cost per unit time. Further, organisation has an incentive to increase 
the selling price. 

Moreover, this article considers that items are received as soon as it is ordered that is, the 
lead time is zero. But, in many cases, we observe a delay in receiving items due 
unavoidable circumstances that could actually make impact in decision making. Again, in 
this model, transportation cost for transporting items from RW to OW is neglected.  
But in practice, extra costs like labour charges, vehicle fares, etc., while transporting 
commodities from RW to OW, are generally incurred in the system. So, one may 
contemplate and study upon these limitations of this paper. Also, for further research, this 
present model may be enhanced in different ways. One such way is to incorporate trade 
credit (single level or two-level) policy. Another extension of this model can be done by 
considering advertisement factor in demand function. Again, one may also think of 
studying this model in fuzzy or stochastic environment. 
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Appendix 1 

This appendix includes definitions of interval number and its parametric functional form 
representation. These definitions have been taken from Das and Roy (2018). 

Definition 1 

We define an interval number Â  as a closed interval [aL, aR] = {x ∈ ℜ: aL ≤ x ≤ aR}, 
where aL, aR are lower and upper bounds respectively and ℜ is the set of real numbers. 

To represent an interval number, we define the corresponding interval function as 
below. 

Definition 2 

Let ˆ [ , ]A aL aR=  be an interval number, where aR ≥ aL > 0. Then, interval function 
corresponding to the interval number Â  is nothing but a real valued function f: [0, 1]  
→ ℜ defined by f(m) = (aL)1–m(aR)m for all m ∈ [0, 1]. It is easy to see that f(m)  
is a monotone increasing function. Clearly, f(0) = aL, f(1) = aR. This implies that  
f(m) ∈ [aL, aR]. 

For convenience, we denote interval function corresponding to interval number 
ˆ [ , ]A aL aR=  as A(m) that is, A(m) = f(m) = (aL)1–m(aR)m. This representation of interval 

number as a real number is called parametric functional form representation. 
For the following interval numbers: 

[ ] [ ]
[ ] [ ] [ ] [ ]

1 1 2 2

1 1 2 2

ˆ ˆ[ , ], [ , ], [ , ], , , , ,
ˆ ˆ ˆ ˆ, , , , , , ,

RW OW

RW OW c c c c c c

a aL aR b bL bR c cL cR H h L h R H h L h R

d d L d R d d L d R S S L S R L L L L R

= = = = =

= = = =
 

The corresponding parametric functional form representations are as below: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1

1 1
1 1 2 2

1 1
1 1 2 2

1 1

( ) ( ) ( ) , ( ) ( ) ( ) , ( ) ( ) ( ) ,

( ) , ( ) ,

( ) , ( ) ,

( ) , ( ) .

m m m m m m

m m m m
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m m m m
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m m m m
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− − −
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Appendix 2 

This appendix includes graphs showing variations of optimal values * * * *, , , ,rTAC T ξ t  
* *
0 ,t Q  and p* with m. 
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Figure 2 Plot of TAC* for different values of m (see online version for colours) 
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Figure 3 Plot of T* for different values of m (see online version for colours) 
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Figure 4 Plot of ξ* for different values of m (see online version for colours) 
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Figure 5 Plot of *
rt  for different values of m (see online version for colours) 
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Figure 6 Plot of *
0t  for different values of m (see online version for colours) 
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Figure 7 Plot of Q* for different values of m (see online version for colours) 
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Figure 8 Plot of p* for different values of m (see online version for colours) 
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